Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells

نویسندگان

  • Seulgee Park
  • Sang Pil Yoon
  • Jinu Kim
چکیده

Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribose) polymerase activation induces high mobility group box 1 release from proximal tubular cells during cisplatin nephrotoxicity.

Cisplatin is one of the most potent chemotherapy drugs against cancer, but its major side effect such as nephrotoxicity limits its use. Inhibition of poly(ADP-ribose) polymerase (PARP) protects against various renal diseases via gene transactivation and/or ADP-ribosylation. However, the role of PARP in necrotic cell death during cisplatin nephrotoxicity remains an open question. Here we demonst...

متن کامل

Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity

Enhanced oxidative stress is a hallmark of cisplatin nephrotoxicity, and inhibition of poly(ADP-ribose) polymerase 1 (PARP1) attenuates oxidative stress during cisplatin nephrotoxicity; however, the precise mechanisms behind its action remain elusive. Here, using an in vitro model of cisplatin-induced injury to human kidney proximal tubular cells, we demonstrated that the protective effect of P...

متن کامل

Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms ...

متن کامل

Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation

Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative and nitrative stresses; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementatio...

متن کامل

Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells

After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015